

authnzerver

Authnzerver is a tiny authentication-authorization server, meant to add these
capabilities to other HTTP servers.

This documentation is a work in progress. For now, see the auto-generated API
docs.

Full API documentation

	authnzerver
	authnzerver package
	Subpackages

	Submodules

Indices and tables

	Index

	Module Index

	Search Page

authnzerver

	authnzerver package
	Subpackages
	authnzerver.actions package
	Submodules

	Submodules
	authnzerver.authdb module

	authnzerver.autosetup module

	authnzerver.cache module

	authnzerver.confload module

	authnzerver.confvars module

	authnzerver.handlers module

	authnzerver.main module

	authnzerver.permissions module

	authnzerver.validators module

authnzerver package

Subpackages

	authnzerver.actions package
	Submodules
	authnzerver.actions.access module

	authnzerver.actions.admin module

	authnzerver.actions.apikey module

	authnzerver.actions.email module

	authnzerver.actions.session module

	authnzerver.actions.user module

Submodules

	authnzerver.authdb module

	authnzerver.autosetup module

	authnzerver.cache module

	authnzerver.confload module

	authnzerver.confvars module

	authnzerver.handlers module

	authnzerver.main module

	authnzerver.permissions module

	authnzerver.validators module

authnzerver.actions package

This contains functions to drive auth actions.

Submodules

	authnzerver.actions.access module

	authnzerver.actions.admin module

	authnzerver.actions.apikey module

	authnzerver.actions.email module

	authnzerver.actions.session module

	authnzerver.actions.user module

authnzerver.actions.access module

This contains functions to apply access control.

	
authnzerver.actions.access.check_user_access(payload, raiseonfail=False, override_permissions_json=None, override_authdb_path=None)

	Checks for user access to a specified item based on a permissions policy.

	Parameters

	
	payload (dict) – This is the input payload dict. Required items:

	user_id: int

	user_role: str

	action: str

	target_name: str

	target_owner: int

	target_visibility: str

	target_sharedwith: str

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_permissions_json (str or None) – If given as a str, is the alternative path to the permissions JSON to
load and use for this request. Normally, the path to the permissions
JSON has already been specified as a process-local variable by the main
authnzerver start up routines. If you want to use some other permissions
model JSON (e.g. for testing), provide that here.

Note that we load the permissions JSON from disk every time we need to
take a decision. This might be a bit slower, but allows for much faster
policy changes by just changing the permissions JSON file and not having
to restart the authnzerver.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	Returns

	The dict returned is of the form:

{'success': True or False,
 'messages': list of str messages if any}

	Return type

	dict

	
authnzerver.actions.access.check_user_limit(payload, raiseonfail=False, override_permissions_json=None, override_authdb_path=None)

	Applies a specified limit to an item based on a permissions policy.

	Parameters

	
	payload (dict) – This is the input payload dict. Required items:

	user_id: int

	user_role: str

	limit_name: str

	value_to_check: any

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_permissions_json (str or None) – If given as a str, is the alternative path to the permissions JSON to
load and use for this request. Normally, the path to the permissions
JSON has already been specified as a process-local variable by the main
authnzerver start up routines. If you want to use some other permissions
model JSON (e.g. for testing), provide that here.

Note that we load the permissions JSON from disk every time we need to
take a decision. This might be a bit slower, but allows for much faster
policy changes by just changing the permissions JSON file and not having
to restart the authnzerver.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	Returns

	The dict returned is of the form:

{'success': True or False,
 'messages': list of str messages if any}

	Return type

	dict

authnzerver.actions.admin module

This contains functions to drive admin related actions (listing users,
editing users, change user roles).

	
authnzerver.actions.admin.edit_user(payload, raiseonfail=False, override_permissions_json=None, override_authdb_path=None)

	This edits users.

	Parameters

	
	payload (dict) – This is the input payload dict. Required items:

	user_id: int, user ID of an admin user or == target_userid

	user_role: str, == ‘superuser’ or == target_userid user_role

	session_token: str, session token of admin or target_userid token

	target_userid: int, the user to edit

	update_dict: dict, the update dict

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

Only these items can be edited:

{'full_name', 'email', <- by user and superuser
 'is_active','user_role', 'email_verified'} <- by superuser only

User IDs 2 and 3 are reserved for the system-wide anonymous and locked
users respectively, and can’t be edited.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_permissions_json (str or None) – If given as a str, is the alternative path to the permissions JSON to
load and use for this request. Normally, the path to the permissions
JSON has already been specified as a process-local variable by the main
authnzerver start up routines. If you want to use some other permissions
model JSON (e.g. for testing), provide that here.

Note that we load the permissions JSON from disk every time we need to
take a decision. This might be a bit slower, but allows for much faster
policy changes by just changing the permissions JSON file and not having
to restart the authnzerver.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	Returns

	The dict returned is of the form:

{'success': True or False,
 'user_info': dict, with new user info,
 'messages': list of str messages if any}

	Return type

	dict

	
authnzerver.actions.admin.internal_toggle_user_lock(payload, raiseonfail=False, override_authdb_path=None)

	Locks/unlocks user accounts.

This version of the function should only be run internally (i.e. not called
by a client). The use-case is automatically locking user accounts if there
are too many incorrect password attempts. The lock can be permanent or
temporary.

	Parameters

	
	payload (dict) – This is the input payload dict. Required items:

	target_userid: int, the user to lock/unlock

	action: str {‘unlock’,’lock’}

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	Returns

	The dict returned is of the form:

{'success': True or False,
 'user_info': dict, with new user info,
 'messages': list of str messages if any}

	Return type

	dict

	
authnzerver.actions.admin.list_users(payload, raiseonfail=False, override_authdb_path=None)

	This lists users.

	Parameters

	
	payload (dict) – This is the input payload dict. Required items:

	user_id: int or None. If None, all users will be returned

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	Returns

	The dict returned is of the form:

{'success': True or False,
 'user_info': list of dicts, one per user,
 'messages': list of str messages if any}

The dicts per user will contain the following items:

{'user_id','full_name', 'email',
 'is_active','created_on','user_role',
 'last_login_try','last_login_success'}

	Return type

	dict

	
authnzerver.actions.admin.toggle_user_lock(payload, raiseonfail=False, override_authdb_path=None)

	Locks/unlocks user accounts.

Can only be run by superusers and is suitable for use when called from a
frontend.

	Parameters

	
	payload (dict) – This is the input payload dict. Required items:

	user_id: int, user ID of a superuser

	user_role: str, == ‘superuser’

	session_token: str, session token of superuser

	target_userid: int, the user to lock/unlock

	action: str {‘unlock’,’lock’}

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	Returns

	The dict returned is of the form:

{'success': True or False,
 'user_info': dict, with new user info,
 'messages': list of str messages if any}

	Return type

	dict

authnzerver.actions.apikey module

This contains functions to drive API key related auth actions.

	
authnzerver.actions.apikey.issue_new_apikey(payload, raiseonfail=False, override_authdb_path=None)

	Issues a new API key.

	Parameters

	
	payload (dict) – The payload dict must have the following keys:

	audience: str, the service this API key is being issued for

	subject: str, the specific API endpoint API key is being issued for

	apiversion: int or str, the API version that the API key is valid for

	expires_days: int, the number of days after which the API key will
expire

	not_valid_before: float or int, the amount of seconds after utcnow()
when the API key becomes valid

	user_id: int, the user ID of the user requesting the API key

	user_role: str, the user role of the user requesting the API key

	ip_address: str, the IP address to tie the API key to

	user_agent: str, the browser user agent requesting the API key

	session_token: str, the session token of the user requesting the API
key

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	Returns

	The dict returned is of the form:

{'success': True or False,
 'apikey': apikey dict,
 'expires': expiry datetime in ISO format,
 'messages': list of str messages if any}

	Return type

	dict

Notes

API keys are tied to an IP address and client header combination.

This function will return a dict with all the API key information. This
entire dict should be serialized to JSON, encrypted and time-stamp signed by
the frontend as the final “API key”, and finally sent back to the client.

	
authnzerver.actions.apikey.verify_apikey(payload, raiseonfail=False, override_authdb_path=None)

	Checks if an API key is valid.

	Parameters

	
	payload (dict) – This dict contains a single key:

	apikey_dict: the decrypted and verified API key info dict from the
frontend.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	Returns

	The dict returned is of the form:

{'success': True if API key is OK and False otherwise,
 'messages': list of str messages if any}

	Return type

	dict

authnzerver.actions.email module

This contains functions to drive email-related auth actions.

	
authnzerver.actions.email.authnzerver_send_email(sender, subject, text, recipients, server, user, password, pii_salt, port=587)

	This is a utility function to send email.

	Parameters

	
	sender (str) – The name and email address of the entity sending the email in the
following form:

"Sender Name <senderemail@example.com>"

	subject (str) – The subject of the email.

	text (str) – The text of the email.

	recipients (list of str) – A list of the email addresses to send the email to. Use either of the
formats below for each email address:

"Recipient Name <recipient@example.com>"
"recipient@example.com"

	server (str) – The address of the email server to use.

	user (str) – The username to use when logging into the email server via SMTP.

	password (str) – The password to use when logging into the email server via SMTP.

	pii_salt (str) – The PII salt value passed in from a wrapping function. Used to censor
personally identifying information in the logs emitted from this
function.

	port (int) – The SMTP port to use when logging into the email server via SMTP.

	Returns

	Returns True if email sending succeeded. False otherwise.

	Return type

	bool

	
authnzerver.actions.email.send_forgotpass_verification_email(payload, raiseonfail=False, override_authdb_path=None)

	This actually sends the forgot password email.

	Parameters

	
	payload (dict) – Keys expected in this dict from a client are:

	email_address: str, the email address to send the email to

	session_token: str, session token of the user being sent the email

	server_name: str, the name of the frontend server

	server_baseurl: str, the base URL of the frontend server

	password_forgot_url: str, the URL fragment of the frontend
forgot-password process initiation endpoint

	verification_token: str, a verification token generated by frontend

	verification_expiry: int, number of seconds after which the token
expires

In addition, the following keys must be provided by a wrapper function
to set up the email server.

	smtp_user

	smtp_pass

	smtp_server

	smtp_port

	smtp_sender

Finally, the payload must also include the following keys (usually added
in by a wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	Returns a dict containing the user_id, email_address, and the
forgotemail_sent_datetime value if email was sent successfully.

	Return type

	dict

	
authnzerver.actions.email.send_signup_verification_email(payload, raiseonfail=False, override_authdb_path=None)

	This actually sends the verification email.

	Parameters

	
	payload (dict) – Keys expected in this dict from a client are:

	email_address: str, the email address to send the email to

	session_token: str, session token of the user being sent the email

	created_info: str, the dict returned by users.auth_create_user()

	server_name: str, the name of the frontend server

	server_baseurl: str, the base URL of the frontend server

	account_verify_url: str, the URL fragment of the frontend verification
endpoint

	verification_token: str, a verification token generated by frontend

	verification_expiry: int, number of seconds after which the token
expires

In addition, the following keys must be provided by a wrapper function
to set up the email server.

	smtp_user

	smtp_pass

	smtp_server

	smtp_port

	smtp_sender

Finally, the payload must also include the following keys (usually added
in by a wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	Returns a dict containing the user_id, email_address, and the
verifyemail_sent_datetime value if email was sent successfully.

	Return type

	dict

	
authnzerver.actions.email.verify_user_email_address(payload, raiseonfail=False, override_authdb_path=None)

	Sets the verification status of the email address of the user.

This is called by the frontend after it verifies that the token challenge to
verify the user’s email succeeded and has not yet expired. This will set the
user_role to ‘authenticated’ and the is_active column to True.

	Parameters

	
	payload (dict) – This is a dict with the following key:

	email

Finally, the payload must also include the following keys (usually added
in by a wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	Returns a dict containing the user_id, is_active, and user_role values
if verification status is successfully set.

	Return type

	dict

authnzerver.actions.session module

This contains functions to drive session-related auth actions.

	
authnzerver.actions.session.auth_delete_sessions_userid(payload, override_authdb_path=None, raiseonfail=False)

	Removes all session tokens corresponding to a user ID.

If keep_current_session is True, will not delete the session token passed in
the payload. This allows for “delete all my other logins” functionality.

	Parameters

	
	payload (dict) – This is a dict with the following required keys:

	session_token: str

	user_id: int

	keep_current_session: bool

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	Returns a dict with a success key indicating if the sessions were
deleted successfully.

	Return type

	dict

	
authnzerver.actions.session.auth_kill_old_sessions(session_expiry_days=7, override_authdb_path=None, raiseonfail=False)

	Kills all expired sessions.

	Parameters

	
	session_expiry_days (int) – All sessions older than the current datetime + this value will be
deleted.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	Returns a dict with a success key indicating if the sessions were
deleted successfully.

	Return type

	dict

	
authnzerver.actions.session.auth_password_check(payload, override_authdb_path=None, raiseonfail=False)

	This runs a password check given a session token and password.

Used to gate high-security areas or operations that require re-verification
of the password for a user’s existing session.

	Parameters

	
	payload (dict) – This is a dict containing the following items:

	session_token

	password

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – The SQLAlchemy database URL to use if not using the default auth DB.

	raiseonfail (bool) – If True, and something goes wrong, this will raise an Exception instead
of returning normally with a failure condition.

	Returns

	Returns a dict containing the result of the password verification check.

	Return type

	dict

	
authnzerver.actions.session.auth_session_delete(payload, override_authdb_path=None, raiseonfail=False)

	Removes a session token, effectively ending a session.

	Parameters

	
	payload (dict) – This is a dict with the following required keys:

	session_token: str

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	Returns a dict with a success key indicating if the session was deleted
successfully.

	Return type

	dict

	
authnzerver.actions.session.auth_session_exists(payload, override_authdb_path=None, raiseonfail=False)

	Checks if the provided session token exists.

	Parameters

	
	payload (dict) – This is a dict, with the following keys required:

	session_token: str

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	Returns a dict containing all of the session info if it exists and has
not expired.

	Return type

	dict

	
authnzerver.actions.session.auth_session_new(payload, override_authdb_path=None, raiseonfail=False)

	Generates a new session token.

	Parameters

	
	payload (dict) – This is the input payload dict. Required items:

	ip_address: str

	user_agent: str

	user_id: int or None (None indicates an anonymous user)

	expires: datetime object or date string in ISO format

	extra_info_json: dict or None

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	The dict returned is of the form:

{'success: True or False,
 'session_token': str session token 32 bytes long in base64 format,
 'expires': str date in ISO format,
 'messages': list of str messages to pass on to the user if any}

	Return type

	dict

	
authnzerver.actions.session.auth_session_set_extrainfo(payload, raiseonfail=False, override_authdb_path=None)

	Adds info to the extra_info_json key of a session column.

	Parameters

	
	payload (dict) – This should contain the following items:

	session_token : str, the session token to update

	extra_info : dict, the update dict to put into the extra_info_json

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	raiseonfail (bool) – If True, and something goes wrong, this will raise an Exception instead
of returning normally with a failure condition.

	override_authdb_path (str or None) – The SQLAlchemy database URL to use if not using the default auth DB.

	Returns

	Returns a dict containing the new session info dict.

	Return type

	dict

	
authnzerver.actions.session.auth_user_login(payload, override_authdb_path=None, raiseonfail=False)

	Logs a user in.

Login flow for frontend:

session cookie get -> check session exists -> check user login -> old
session delete (no matter what) -> new session create (with actual user_id
and other info now included if successful or same user_id = anon if not
successful) -> done

The frontend MUST unset the cookie as well.

FIXME: update (and fake-update) the Users table with the last_login_try and
last_login_success.

	Parameters

	
	payload (dict) – The payload dict should contain the following keys:

	session_token: str

	email: str

	password: str

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – The SQLAlchemy database URL to use if not using the default auth DB.

	raiseonfail (bool) – If True, and something goes wrong, this will raise an Exception instead
of returning normally with a failure condition.

	Returns

	Returns a dict containing the result of the password verification check.

	Return type

	dict

	
authnzerver.actions.session.auth_user_logout(payload, override_authdb_path=None, raiseonfail=False)

	Logs out a user.

Deletes the session token from the session store. On the next request
(redirect from POST /auth/logout to GET /), the frontend will issue a new
one.

The frontend MUST unset the cookie as well.

	Parameters

	
	payload (dict) – The payload dict should contain the following keys:

	session_token: str

	user_id: int

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – The SQLAlchemy database URL to use if not using the default auth DB.

	raiseonfail (bool) – If True, and something goes wrong, this will raise an Exception instead
of returning normally with a failure condition.

	Returns

	Returns a dict containing the result of the password verification check.

	Return type

	dict

authnzerver.actions.user module

This contains functions to drive user account related auth actions.

	
authnzerver.actions.user.change_user_password(payload, override_authdb_path=None, raiseonfail=False, min_pass_length=12, max_similarity=30)

	Changes the user’s password.

	Parameters

	
	payload (dict) – This is a dict with the following required keys:

	user_id: int

	session_token: str

	full_name: str

	email: str

	current_password: str

	new_password: str

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	min_pass_length (int) – The minimum required character length of the password.

	max_similarity (int) – The maximum UQRatio required to fuzzy-match the input password against
the server’s domain name, the user’s email, or their name.

	Returns

	Returns a dict with the user’s user_id and email as keys if successful.

	Return type

	dict

Notes

This logs out the user from all of their other sessions.

	
authnzerver.actions.user.create_new_user(payload, min_pass_length=12, max_similarity=30, override_authdb_path=None, raiseonfail=False)

	Makes a new user.

	Parameters

	
	payload (dict) – This is a dict with the following required keys:

	full_name: str

	email: str

	password: str

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	min_pass_length (int) – The minimum required character length of the password.

	max_similarity (int) – The maximum UQRatio required to fuzzy-match the input password against
the server’s domain name, the user’s email, or their name.

	Returns

	Returns a dict with the user’s user_id and user_email, and a boolean for
send_verification.

	Return type

	dict

Notes

The emailverify_sent_datetime is set to the current time. The initial
account’s is_active is set to False and user_role is set to ‘locked’.

The email verification token sent by the frontend expires in 2 hours. If the
user doesn’t get to it by then, they’ll have to wait at least 24 hours until
another one can be sent.

If the email address already exists in the database, then either the user
has forgotten that they have an account or someone else is being
annoying. In this case, if is_active is True, we’ll tell the user that we’ve
sent an email but won’t do anything. If is_active is False and
emailverify_sent_datetime is at least 24 hours in the past, we’ll send a new
email verification email and update the emailverify_sent_datetime. In this
case, we’ll just tell the user that we’ve sent the email but won’t tell them
if their account exists.

Only after the user verifies their email, is_active will be set to True and
user_role will be set to ‘authenticated’.

	
authnzerver.actions.user.delete_user(payload, raiseonfail=False, override_authdb_path=None)

	Deletes a user.

This can only be called by the user themselves or the superuser.

This will also immediately invalidate all sessions corresponding to the
target user.

Superuser accounts cannot be deleted.

	Parameters

	
	payload (dict) – This is a dict with the following required keys:

	email: str

	user_id: int

	password: str

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	Returns

	Returns a dict containing a success key indicating if the user was
deleted.

	Return type

	dict

	
authnzerver.actions.user.validate_input_password(full_name, email, password, pii_salt, min_length=12, max_match_threshold=20)

	Validates user input passwords.

	must be at least min_length characters (we’ll truncate the password at
1024 characters since we don’t want to store entire novels)

	must not match within max_match_threshold of their email or full_name

	must not match within max_match_threshold of the site’s FQDN

	must not have a single case-folded character take up more than 20% of the
length of the password

	must not be completely numeric

	must not be in the top 10k passwords list

	Parameters

	
	full_name (str) – The full name of the user creating the account.

	email (str) – The email address of the user creating the account.

	password (str) – The password of the user creating the account.

	pii_salt (str) – The PII salt value passed in from a wrapping function. Used to censor
personally identifying information in the logs emitted from this
function.

	min_length (int) – The minimum required character length of the password.

	max_match_threshold (int) – The maximum UQRatio required to fuzzy-match the input password against
the server’s domain name, the user’s email, or their name.

	Returns

	Returns True if the password is OK to use and meets all
specification. False otherwise.

	Return type

	bool

	
authnzerver.actions.user.verify_password_reset(payload, raiseonfail=False, override_authdb_path=None, min_pass_length=12, max_similarity=30)

	Verifies a password reset request.

	Parameters

	
	payload (dict) – This is a dict with the following required keys:

	email_address: str

	new_password: str

	session_token: str

In addition to these items received from an authnzerver client, the
payload must also include the following keys (usually added in by a
wrapping function):

	reqid: int or str

	pii_salt: str

	raiseonfail (bool) – If True, will raise an Exception if something goes wrong.

	override_authdb_path (str or None) – If given as a str, is the alternative path to the auth DB.

	min_pass_length (int) – The minimum required character length of the password.

	max_similarity (int) – The maximum UQRatio required to fuzzy-match the input password against
the server’s domain name, the user’s email, or their name.

	Returns

	Returns a dict containing a success key indicating if the user’s
password was reset.

	Return type

	dict

authnzerver.authdb module

This contains SQLAlchemy models for the authnzerver.

	
authnzerver.authdb.create_authdb(authdb_url, database_metadata=MetaData(bind=None), echo=False, returnconn=False)

	This creates an authentication database for an arbitrary SQLAlchemy DB URL.

	
authnzerver.authdb.create_sqlite_authdb(auth_db_path, database_metadata=MetaData(bind=None), echo=False, returnconn=False)

	This creates the local SQLite auth DB.

	
authnzerver.authdb.get_auth_db(authdb_path, database_metadata=MetaData(bind=None), echo=False)

	This just gets a connection to the auth DB.

	
authnzerver.authdb.initial_authdb_inserts(auth_db_path, permissions_json=None, database_metadata=MetaData(bind=None), superuser_email=None, superuser_pass=None, echo=False)

	This does initial set up of the auth DB.

	adds an anonymous user

	adds a superuser with:
- userid = UNIX userid
- password = random 16 bytes)

	sets up the initial permissions table

Returns the superuser userid and password.

authnzerver.autosetup module

This contains functions to set up the authnzerver automatically on first-start.

	
authnzerver.autosetup.autogen_secrets_authdb(basedir, database_url=None, interactive=False)

	This automatically generates secrets files and an authentication DB.

Run this only once on the first start of an authnzerver.

	Parameters

	
	basedir (str) – The base directory of the authnzerver.

	The authentication database will be written to a file called
.authdb.sqlite in this directory.

	The secret token to authenticate HTTP communications between the
authnzerver and a frontend server will be written to a file called
.authnzerver-secret-key in this directory.

	Credentials for a superuser that can be used to edit various
authnzerver options, and users will be written to
.authnzerver-admin-credentials in this directory.

	A random salt value will be written to .authnzerver-random-salt in
this directory. This is used to hash user IDs and other PII in logs.

	database_url (str or None) – If this is a str, must be a valid SQLAlchemy database URL to use to
connect to a database and make the necessary tables for authentication
info. If this is None, will create a new SQLite database in the
<basedir>/.authdb.sqlite file.

	interactive (bool) – If True, will ask the user for an admin email address and
password. Otherwise, will auto-generate both.

	Returns

	(authdb_path, creds, secret_file, salt_file) – The names of the files written by this function will be returned as a
tuple of strings.

	Return type

	tuple of str

authnzerver.cache module

This contains functions to drive the cache.

	
authnzerver.cache.cache_add(key, value, timeout_seconds=0.3, expires_seconds=None, cache_dirname='/tmp/authnzerver-cache')

	This sets a key to the value specified in the cache.

	
authnzerver.cache.cache_decrement(key, timeout_seconds=0.3, cache_dirname='/tmp/authnzerver-cache')

	This decrements the counter for key.

	
authnzerver.cache.cache_delete(key, timeout_seconds=0.3, cache_dirname='/tmp/authnzerver-cache')

	This sets a key to the value specified in the cache.

	
authnzerver.cache.cache_flush(timeout_seconds=0.3, cache_dirname='/tmp/authnzerver-cache')

	This removes all keys from the cache.

	
authnzerver.cache.cache_get(key, timeout_seconds=0.3, cache_dirname='/tmp/authnzerver-cache')

	This sets a key to the value specified in the cache.

	
authnzerver.cache.cache_getrate(key, timeout_seconds=0.3, cache_dirname='/tmp/authnzerver-cache')

	This gets the rate of increment for the key by looking at the time of
insertion inserted at key and the number of times it was incremented in
key-counter. The rate is then:

key-counter_val/((time_now - time_insertion)/60.0)

	
authnzerver.cache.cache_increment(key, timeout_seconds=0.3, cache_dirname='authnzerver-cache')

	This sets up a counter for the key in the cache.

Sets the key -> time of initial insertion
Then increments ‘key-counter’.

	
authnzerver.cache.cache_pop(key, timeout_seconds=0.3, cache_dirname='/tmp/authnzerver-cache')

	This sets a key to the value specified in the cache.

authnzerver.confload module

This contains functions to load config from environ, command line params, or
an envfile.

	
authnzerver.confload.get_conf_item(env_key, environment, options_object, options_key=None, vartype=<class 'str'>, default=None, readable_from_file=False, postprocess_value=None, raiseonfail=True, basedir=None)

	This loads a config item from the environment or command-line options.

The order of precedence is:

	environment or envfile if that is provided

	command-line option

	Parameters

	
	env_key (str) – The environment variable that specifies the item to get.

	environment (environment object or ConfigParser object) – This is an object similar to that obtained from os.environ or a
similar ConfigParser object.

	options_object (Tornado options object) – If the environment variable isn’t defined, the next place this function
will try to get the item value from a passed-in Tornado options [http://www.tornadoweb.org/en/stable/options.html] object, which
parses command-line options.

	vartype (Python type object: float, str, int, etc.) – The type to use to coerce the input variable to a specific Python type.

	default (Any) – The default value of the conf item.

	options_key (str) – This is the attribute to look up in the options object for the value of
the conf item.

	readable_from_file ({'json','string', others, see below} or False) – If this is specified, and the conf item key (env_key or options_key
above) is a valid filename or URL, will open it and read it in, cast to
the specified variable type, and return the item. If this is set to
False, will treat the config item pointed to by the key as a plaintext
item and return it directly.

There are several readable_from_file options. The first two below are
strings, the rest are tuples.

	'string': read a file and use the resulting string as the value of
the config item. The trailing \n character will be stripped. This
is useful for simple text secret keys stored in a file on disk, etc.

	'json': read the entire file as JSON and return the loaded dict as
the value of the config item.

	('json','path.to.item.or.listitem._arr_0'): read the entire file
as JSON, resolve the JSON object path pointed to by the second tuple
element, get the value there and return it as the value of the config
item.

	('http',{method dict},'string'): HTTP GET/POST the URL pointed to
by the config item key, assume the value returned is plain-text and
return it as the value of the config item. This can be useful for
things stored in AWS/GCP metadata servers.

	('http',{method dict},'json'): HTTP GET/POST the URL pointed to by
the config item key, load it as JSON, and return the loaded dict as
the value of the config item.

	('http',{method dict},'json','path.to.item.or.listitem._arr_0'):
HTTP GET the URL pointed to by the config key, load it as JSON,
resolve the JSON object path pointed to by the fourth element of the
tuple, get the value there and return it as the value of the config
item.

The {method dict} is a dict of the following form:

{'method':'post' or 'get',
 'headers':dict of header keys and values to send or None,
 'data':data dict to attach to the POST request or param dict to
 attach to the GET request or None,
 'timeout': time in seconds to wait for a response}

Using the method dict allows you to add in authentication headers and
data needed to gain access to the URL indicated by the config item key.

If an item in the ‘headers’ or ‘data’ dicts requires something from an
environment variable or .env file, indicate this by using '[[NAME OF
ENV VAR]]' in the value of that key. For example, to get a bearer
token to use in the ‘Authorization’ header:

method_dict['headers'] = {'Authorization': 'Bearer [[API_KEY]]'}

This will look up the environment variable ‘API_KEY’ and substitute
that value in.

	postprocess_value (str) – This is a string pointing to a Python function to apply to the config
item that was retrieved. The function must take one argument and return
one item. The function is specified as either a fully qualified Python
module name and function name, e.g.:

'base64.b64decode'

or a path to a Python module on disk and the function name separated by
‘::’

'~/some/directory/mymodule.py::custom_b64decode'

	raiseonfail (bool) – If this is set to True, the function will raise a ValueError for any
missing config items that can’t be set from the environment, the envfile
or the command-line options. If this is set to False, the function won’t
immediately raise an exception, but will return None. This latter
behavior is useful for indicating which configuration items are missing
(e.g. when a server is being started for the first time.)

	basedir (str) – The directory where the server will do its work. This is used to fill in
'[[basedir]]' template values in any conf item. By default, this is
the current working directory.

	Returns

	The value of the configuration item.

	Return type

	Any

	
authnzerver.confload.item_from_file(file_path, file_spec, basedir=None)

	Reads a conf item from a file.

	Parameters

	
	file_path (str) – The file to open. Here you can use the following substitutions as
necessary:

	[[homedir]]: points to the home directory of the user running the
server.

	[[basedir]]: points to the base directory of the server.

	file_spec (str or tuple) – This specifies how to read the conf item from the file:

	'string': read a file and use the resulting string as the value of
the config item. The trailing \n character will be stripped. This
is useful for simple text secret keys stored in a file on disk, etc.

	'json': read the entire file as JSON and return the loaded dict as
the value of the config item.

	('json','path.to.item.or.listitem._arr_0'): read the entire file
as JSON, resolve the JSON object path pointed to by the second tuple
element, get the value there and return it as the value of the config
item.

	basedir (str or None) – The base directory of the server. If None, the current working directory
is used.

	Returns

	conf_value – Returns the value of the conf item. The calling function is
responsible for casting to the correct type.

	Return type

	Any

	
authnzerver.confload.item_from_url(url, url_spec, environment, timeout=5.0)

	Reads a conf item from a URL.

	Parameters

	
	url (str) – The URL to fetch.

	url_spec (tuple) – This specifies how to get the conf item from the URL:

	('http',{method dict},'string'): HTTP GET/POST the URL pointed to
by the config item key, assume the value returned is plain-text and
return it as the value of the config item. This can be useful for
things stored in AWS/GCP metadata servers.

	('http',{method dict},'json'): HTTP GET/POST the URL pointed to by
the config item key, load it as JSON, and return the loaded dict as
the value of the config item.

	('http',{method dict},'json','path.to.item.or.listitem._arr_0'):
HTTP GET the URL pointed to by the config key, load it as JSON,
resolve the JSON object path pointed to by the fourth element of the
tuple, get the value there and return it as the value of the config
item.

The {method dict} is a dict of the following form:

{'method':'post' or 'get',
 'headers':dict of header keys and values to send or None,
 'data':data dict to attach to the POST request or param dict to
 attach to the GET request or None,
 'timeout': time in seconds to wait for a response}

Using the method dict allows you to add in authentication headers and
data needed to gain access to the URL indicated by the config item key.

If an item in the ‘headers’ or ‘data’ dicts requires something from an
environment variable or .env file, indicate this by using '[[NAME OF
ENV VAR]]' in the value of that key. For example, to get a bearer
token to use in the ‘Authorization’ header:

method_dict['headers'] = {'Authorization': 'Bearer [[API_KEY]]'}

This will look up the environment variable ‘API_KEY’ and substitute
that value in.

	environment (environment object or ConfigParser object) – This is an object similar to that obtained from os.environ or a
similar ConfigParser object.

	timeout (int or float) – The default timeout in seconds to use for the HTTP request if one is not
provided in the method dict in url_spec.

	Returns

	conf_value – Returns the value of the conf item. The calling function is
responsible for casting to the correct type.

	Return type

	Any

	
authnzerver.confload.load_config(conf_dict, options_object, envfile=None)

	Loads all the config items in config_dict.

	Parameters

	
	conf_dict (dict) – This is a dict containing information on each config item to load and
return. Each key in this dict serves as the name of the config item and
the value for each key is a dict of the following form:

'conf_item_name':{
 'env':'The environmental variable to check',
 'cmdline':'The command-line option to check',
 'type':the Python type of the config item,
 'default':a default value for the config item or None,
 'help':'The help string to use for the command-line option',
 'readable_from_file':how to retrieve the item (see below),
 'postprocess_value': 'func to postprocess the item (see below)',
},

The 'readable_from_file' key in each config item’s dict indicates
how the value present in either the environment variable or the
command-line option will be used to retrieve the config item. This is
one of the following:

	'string': read a file and use the resulting string as the value of
the config item. The trailing \n character will be stripped. This
is useful for simple text secret keys stored in a file on disk, etc.

	'json': read the entire file as JSON and return the loaded dict as
the value of the config item.

	('json','path.to.item.or.listitem._arr_0'): read the entire file
as JSON, resolve the JSON object path pointed to by the second tuple
element, get the value there and return it as the value of the config
item.

	('http',{method dict},'string'): HTTP GET/POST the URL pointed to
by the config item key, assume the value returned is plain-text and
return it as the value of the config item. This can be useful for
things stored in AWS/GCP metadata servers.

	('http',{method dict},'json'): HTTP GET/POST the URL pointed to by
the config item key, load it as JSON, and return the loaded dict as
the value of the config item.

	('http',{method dict},'json','path.to.item.or.listitem._arr_0'):
HTTP GET the URL pointed to by the config key, load it as JSON,
resolve the JSON object path pointed to by the fourth element of the
tuple, get the value there and return it as the value of the config
item.

The {method dict} is a dict of the following form:

{'method':'post' or 'get',
 'headers':dict of header keys and values to send or None,
 'data':data dict to attach to the POST request or param dict to
 attach to the GET request or None,
 'timeout': time in seconds to wait for a response}

Using the method dict allows you to add in authentication headers and
data needed to gain access to the URL indicated by the config item key.

If an item in the ‘headers’ or ‘data’ dicts requires something from an
environment variable or .env file, indicate this by using '[[NAME OF
ENV VAR]]' in the value of that key. For example, to get a bearer
token to use in the ‘Authorization’ header:

method_dict['headers'] = {'Authorization': 'Bearer [[API_KEY]]'}

This will look up the environment variable ‘API_KEY’ and substitute
that value in.

The 'postprocess_value' key in each config item’s dict is used to
point to a Python function to post-process the config item after it has
been retrieved. The function must take one argument and return
one item. The function is specified as either a fully qualified Python
module name and function name, e.g.:

'base64.b64decode'

or a path to a Python module on disk and the function name separated by
‘::’

'~/some/directory/mymodule.py::custom_b64decode'

	options_object (Tornado options object) – If the environment variable isn’t defined for a config item, the next
place this function will try to get the item value from a passed-in
Tornado options [http://www.tornadoweb.org/en/stable/options.html]
object, which parses command-line options.

	envfile (str or None) – The path to a file containing key=value pairs in the same manner as
environment variables. This serves as an override to any environment
variables that this function looks up to find config items.

	Returns

	loaded_config – This returns an object with the parsed final values of each of the
config items as object attributes.

	Return type

	SimpleNamespace object

authnzerver.confvars module

Contains the configuration variables that define how the server operates.

The CONF dict in this file describes how to load these variables from the
environment or command-line options.

You can change this file as needed. It will be copied over to the authnzerver’s
base directory when authnzrv --autosetup is run and you can tell authnzerver
to use it like so: authnzrv --confvars /path/to/basedir/confvars.py.

You MUST NOT store any actual secrets in this file; just define how to get to
them.

For example, look at the secret dict entry below in CONF:

'secret':{
 'env':'%s_SECRET' % ENVPREFIX,
 'cmdline':'secret',
 'type':str,
 'default':None,
 'help':('The shared secret key used to secure '
 'communications between authnzerver and any frontend servers.'),
 'readable_from_file':'string',
 'postprocess_value':None,
}

This means the server will look at an environmental variable called
AUTHNZERVER_SECRET, falling back to the value provided in the --secret
command line option. The readable_from_file key tells the server how to
handle the value it retrieved from either of these two sources.

To indicate that the retrieved value is to be used directly, set
"readable_from_file" = False.

To indicate that the retrieved value can either be: (i) used directly or, (ii)
may be a path to a file and the actual value of the secret item is a string
to be read from that file, set "readable_from_file" = "string".

To indicate that the retrieved value is a URL and the authnzerver must fetch the
actual secret from this URL, set:

"readable_from_file" = ("http",
 {'method':'get',
 'headers':{header dict},
 'data':{param dict},
 'timeout':5.0},
 'string')

Finally, you can also tell the server to fetch a JSON and pick out a key in the
JSON. See the docstring for authnzerver.confload.get_conf_item() for
more details on the various ways to retrieve the actual item pointed to by the
config variable key.

To make this example more concrete, if the authnzerver secret was stored as
a GCP Secrets Manager [https://cloud.google.com/secret-manager/docs/creating-and-accessing-secrets#access_a_secret_version]
item, you’d set some environmental variables like so:

GCP_SECMAN_URL=https://secretmanager.googleapis.com/v1/projects/abcproj/secrets/abc/versions/z:access
GCP_AUTH_TOKEN=some-secret-token

Then change the secret dict item in CONF dict below to:

'secret':{
 'env':'GCP_SECMAN_URL',
 'cmdline':'secret',
 'type':str,
 'default':None,
 'help':('The shared secret key used to secure '
 'communications between authnzerver and any frontend servers.'),
 'readable_from_file':see below,
 'postprocess_value':'custom_decode.py::custom_b64decode',
}

The readable_from_file key would be set to something like:

"readable_from_file" = ("http",
 {"method":"get",
 "headers":{"Authorization":"Bearer [[GCP_AUTH_TOKEN]]",
 "Content-Type":"application/json",
 "x-goog-user-project": "abcproj"},
 "data":None,
 "timeout":5.0},
 'json',
 "payload.data")

This would then load the authnzerver secret directly from the Secrets
Manager.

Notice that we used a path to a Python module and function for the
postprocess_value key. This is because GCP’s Secrets Manager base-64 encodes
the data you put into it and we need to post-process the value we get back from
the stored item’s URL. This module looks like:

import base64

def custom_b64decode(input):
 return base64.b64decode(input.encode('utf-8')).decode('utf-8')

The function above will base-64 decode the value returned from the Secrets
Manager and finally give us the secret value we need.

authnzerver.handlers module

These are handlers for the authnzerver.

	
class authnzerver.handlers.AuthHandler(application: tornado.web.Application, request: tornado.httputil.HTTPServerRequest, **kwargs)

	Bases: tornado.web.RequestHandler

This handles the actual auth requests.

	
initialize(config, executor, reqid_cache, failed_passchecks)

	This sets up stuff.

	
post()

	Handles the incoming POST request.

	
class authnzerver.handlers.EchoHandler(application: tornado.web.Application, request: tornado.httputil.HTTPServerRequest, **kwargs)

	Bases: tornado.web.RequestHandler

This just echoes back whatever we send.

Useful to see if the encryption is working as intended.

	
initialize(authdb, fernet_secret, executor)

	This sets up stuff.

	
post()

	Handles the incoming POST request.

	
class authnzerver.handlers.FrontendEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.encoder.JSONEncoder

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
authnzerver.handlers.auth_echo(payload)

	This just echoes back the payload.

	
authnzerver.handlers.check_host(remote_ip)

	This just returns False if the remote_ip != 127.0.0.1

	
authnzerver.handlers.decrypt_request(requestbody_base64, fernet_key)

	This decrypts the incoming request.

	
authnzerver.handlers.encrypt_response(response_dict, fernet_key)

	This encrypts the outgoing response.

authnzerver.main module

This is the main file for the authnzerver, a simple authorization and
authentication server backed by SQLite, SQLAlchemy, and Tornado.

	
authnzerver.main.main()

	This is the main function.

authnzerver.permissions module

This contains the permissions and user-role models for authnzerver.

	
authnzerver.permissions.check_item_access(permissions_model, userid=2, role='anonymous', action='view', target_name='collection', target_owner=1, target_visibility='private', target_sharedwith=None, debug=False)

	This does a check for user access to a target item.

	Parameters

	
	permissions_policy (dict) – A permissions model returned by load_permissions_json().

	userid (int) – The userid of the user requesting access.

	role (str) – The role of the user requesting access.

	action (str) – The action requested to be applied to the item.

	target_name (str) – The name of the item for which the policy will be checked.

	target_owner (int) – The userid of the user that owns the item for which the policy will be
checked.

	target_visibility (str) – The visibility of the item for which the policy will be checked.

	target_sharedwith (str) – A CSV string of the userids that the target item is shared with.

	debug (bool) – If True, will report the various policy decisions applied.

	Returns

	True if access was granted. False otherwise.

	Return type

	bool

	
authnzerver.permissions.check_role_limits(permissions_model, role, limit_name, value_to_check)

	This applies the role limits to a value to check.

	Parameters

	
	permissions_model (dict) – A permissions model returned by load_permissions_json().

	role (str) – The name of the role to check the limits for.

	limit_name (str) – The name of limit to check.

	value_to_check (float or int) – The value to check against the limit.

	Returns

	Returns True if the limit hasn’t been exceeded. Returns False otherwise.

	Return type

	bool

	
authnzerver.permissions.get_item_actions(permissions_model, role_name, target_name, target_visibility, target_ownership, debug=False)

	Returns the possible actions for a target given a role and target
status.

	Parameters

	
	permissions_policy (dict) – A permissions model returned by load_permissions_json().

	role_name (str) – The name of the role to find the valid actions for.

	target_name (str) – The name of the item to check the valid actions for.

	target_visibility (str) – The visibility of the tiem to check the valid actions for.

	target_ownership ({'for_owned','for_other'}) – If ‘for_owned’, only the valid actions for the target item available if
the item is owned by the user will be returned. If ‘for_other’, only the
valid actions subject to the visibility of the item owned by other users
will be returned.

	debug (bool) – If True, will print the policy decisions being taken.

	Returns

	Returns a set of valid actions for the target item based on the applied
policy. If the actions don’t make sense, returns an empty set, in which
case access MUST be denied.

	Return type

	set

	
authnzerver.permissions.load_permissions_json(model_json)

	Loads a permissions JSON and returns the model.

	
authnzerver.permissions.load_policy_and_check_access(permissions_json, userid=2, role='anonymous', action='view', target_name='collection', target_owner=1, target_visibility='private', target_sharedwith=None, debug=False)

	Does a check for user access to a target item.

This version loads a permissions JSON from disk every time it is called.

	Parameters

	
	permissions_policy (dict) – A permissions model returned by load_permissions_json().

	userid (int) – The userid of the user requesting access.

	role (str) – The role of the user requesting access.

	action (str) – The action requested to be applied to the item.

	target_name (str) – The name of the item for which the policy will be checked.

	target_owner (int) – The userid of the user that owns the item for which the policy will be
checked.

	target_visibility (str) – The visibility of the item for which the policy will be checked.

	target_sharedwith (str) – A CSV string of the userids that the target item is shared with.

	debug (bool) – If True, will report the various policy decisions applied.

	Returns

	True if access was granted. False otherwise.

	Return type

	bool

	
authnzerver.permissions.load_policy_and_check_limits(permissions_json, role, limit_name, value_to_check)

	Applies the role limits to a value to check.

This version loads a policy JSON every time it is called.

	Parameters

	
	permissions_model (dict) – A permissions model returned by load_permissions_json().

	role (str) – The name of the role to check the limits for.

	limit_name (str) – The name of limit to check.

	value_to_check (float or int) – The value to check against the limit.

	Returns

	Returns True if the limit hasn’t been exceeded. Returns False otherwise.

	Return type

	bool

	
authnzerver.permissions.pii_hash(item, salt)

	

authnzerver.validators module

This module contains validation functions taken from the James Bennett’s
excellent django-registration [https://github.com/ubernostrum/django-registration] package. I’ve modified it
a bit so the validators don’t need Django to work. The original docstring and
the BSD License for that package are reproduced immediately below.

Copyright (c) 2007-2018, James Bennett
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the author nor the names of other
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Error messages, data and custom validation code used in
django-registration’s various user-registration form classes.

	
authnzerver.validators.normalize_value(value)

	This normalizes a given value and casefolds it.

Assumes that the value has already passed validation.

	
authnzerver.validators.validate_confusables(value)

	This validates if the value is not a confusable homoglyph.

	
authnzerver.validators.validate_confusables_email(value)

	Validator which disallows ‘dangerous’ email addresses likely to
represent homograph attacks.

An email address is ‘dangerous’ if either the local-part or the
domain, considered on their own, are mixed-script and contain one
or more characters appearing in the Unicode Visually Confusable
Characters file.

	
authnzerver.validators.validate_email_address(emailaddr)

	This validates an email address using the HTML5 specification,
which is good enough for most purposes.

The regex is taken from here:

http://blog.gerv.net/2011/05/html5_email_address_regexp/

And was transformed to Python using the excellent https://regex101.com.

	
authnzerver.validators.validate_reserved_name(value)

	This validates if the value is not one of the reserved names.

	
authnzerver.validators.validate_unique_value(value, check_list)

	This checks if the input value does not already exist in the check_list.

The check_list comes from the DB and should contain user names, etc. that
have been already normalized and casefolded.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 authnzerver	

 	
 	
 authnzerver.actions	

 	
 	
 authnzerver.actions.access	

 	
 	
 authnzerver.actions.admin	

 	
 	
 authnzerver.actions.apikey	

 	
 	
 authnzerver.actions.email	

 	
 	
 authnzerver.actions.session	

 	
 	
 authnzerver.actions.user	

 	
 	
 authnzerver.authdb	

 	
 	
 authnzerver.autosetup	

 	
 	
 authnzerver.cache	

 	
 	
 authnzerver.confload	

 	
 	
 authnzerver.confvars	

 	
 	
 authnzerver.handlers	

 	
 	
 authnzerver.main	

 	
 	
 authnzerver.permissions	

 	
 	
 authnzerver.validators	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | S
 | T
 | V

A

 	
 	auth_delete_sessions_userid() (in module authnzerver.actions.session)

 	auth_echo() (in module authnzerver.handlers)

 	auth_kill_old_sessions() (in module authnzerver.actions.session)

 	auth_password_check() (in module authnzerver.actions.session)

 	auth_session_delete() (in module authnzerver.actions.session)

 	auth_session_exists() (in module authnzerver.actions.session)

 	auth_session_new() (in module authnzerver.actions.session)

 	auth_session_set_extrainfo() (in module authnzerver.actions.session)

 	auth_user_login() (in module authnzerver.actions.session)

 	auth_user_logout() (in module authnzerver.actions.session)

 	AuthHandler (class in authnzerver.handlers)

 	authnzerver (module)

 	authnzerver.actions (module)

 	authnzerver.actions.access (module)

 	authnzerver.actions.admin (module)

 	
 	authnzerver.actions.apikey (module)

 	authnzerver.actions.email (module)

 	authnzerver.actions.session (module)

 	authnzerver.actions.user (module)

 	authnzerver.authdb (module)

 	authnzerver.autosetup (module)

 	authnzerver.cache (module)

 	authnzerver.confload (module)

 	authnzerver.confvars (module)

 	authnzerver.handlers (module)

 	authnzerver.main (module)

 	authnzerver.permissions (module)

 	authnzerver.validators (module)

 	authnzerver_send_email() (in module authnzerver.actions.email)

 	autogen_secrets_authdb() (in module authnzerver.autosetup)

C

 	
 	cache_add() (in module authnzerver.cache)

 	cache_decrement() (in module authnzerver.cache)

 	cache_delete() (in module authnzerver.cache)

 	cache_flush() (in module authnzerver.cache)

 	cache_get() (in module authnzerver.cache)

 	cache_getrate() (in module authnzerver.cache)

 	cache_increment() (in module authnzerver.cache)

 	cache_pop() (in module authnzerver.cache)

 	
 	change_user_password() (in module authnzerver.actions.user)

 	check_host() (in module authnzerver.handlers)

 	check_item_access() (in module authnzerver.permissions)

 	check_role_limits() (in module authnzerver.permissions)

 	check_user_access() (in module authnzerver.actions.access)

 	check_user_limit() (in module authnzerver.actions.access)

 	create_authdb() (in module authnzerver.authdb)

 	create_new_user() (in module authnzerver.actions.user)

 	create_sqlite_authdb() (in module authnzerver.authdb)

D

 	
 	decrypt_request() (in module authnzerver.handlers)

 	
 	default() (authnzerver.handlers.FrontendEncoder method)

 	delete_user() (in module authnzerver.actions.user)

E

 	
 	EchoHandler (class in authnzerver.handlers)

 	
 	edit_user() (in module authnzerver.actions.admin)

 	encrypt_response() (in module authnzerver.handlers)

F

 	
 	FrontendEncoder (class in authnzerver.handlers)

G

 	
 	get_auth_db() (in module authnzerver.authdb)

 	
 	get_conf_item() (in module authnzerver.confload)

 	get_item_actions() (in module authnzerver.permissions)

I

 	
 	initial_authdb_inserts() (in module authnzerver.authdb)

 	initialize() (authnzerver.handlers.AuthHandler method)

 	(authnzerver.handlers.EchoHandler method)

 	
 	internal_toggle_user_lock() (in module authnzerver.actions.admin)

 	issue_new_apikey() (in module authnzerver.actions.apikey)

 	item_from_file() (in module authnzerver.confload)

 	item_from_url() (in module authnzerver.confload)

L

 	
 	list_users() (in module authnzerver.actions.admin)

 	load_config() (in module authnzerver.confload)

 	
 	load_permissions_json() (in module authnzerver.permissions)

 	load_policy_and_check_access() (in module authnzerver.permissions)

 	load_policy_and_check_limits() (in module authnzerver.permissions)

M

 	
 	main() (in module authnzerver.main)

N

 	
 	normalize_value() (in module authnzerver.validators)

P

 	
 	pii_hash() (in module authnzerver.permissions)

 	
 	post() (authnzerver.handlers.AuthHandler method)

 	(authnzerver.handlers.EchoHandler method)

S

 	
 	send_forgotpass_verification_email() (in module authnzerver.actions.email)

 	
 	send_signup_verification_email() (in module authnzerver.actions.email)

T

 	
 	toggle_user_lock() (in module authnzerver.actions.admin)

V

 	
 	validate_confusables() (in module authnzerver.validators)

 	validate_confusables_email() (in module authnzerver.validators)

 	validate_email_address() (in module authnzerver.validators)

 	validate_input_password() (in module authnzerver.actions.user)

 	
 	validate_reserved_name() (in module authnzerver.validators)

 	validate_unique_value() (in module authnzerver.validators)

 	verify_apikey() (in module authnzerver.actions.apikey)

 	verify_password_reset() (in module authnzerver.actions.user)

 	verify_user_email_address() (in module authnzerver.actions.email)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 authnzerver

 		
 authnzerver

 		
 authnzerver package

 		
 Subpackages

 		
 Submodules

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

